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INtroduction

to (Classical) Randomness Extractors

e Goal: transform only partly random classical distribution P over
an alphabet N into (almost perfectly) uniformly random
distribution over a shorter alphabet M

e Only Conditions on the input source: contains some randomness,
as measured by the min-entropy Hmin(N)p = -log maxxen P(X)




INtroduction

to (Classical) Randomness Extractors

e (Cannot be achieved in a deterministic way, if we require it to work
for all sources satistying a lower bound on their min-entropy

 (Can be achieved if the use of a catalyst is allowed: additional
uniformly random source over an alphabet D (called the seed)



INtroauction

o (Classical) Randomness Extractors

Definition:

A (k,e) Extractor is a deterministic mapping Ext: D x N -> M such that
for all probability distributions P on N such that Hmin(N)p = k we have
that (Up, Ext(BUp)) is e-close in variational distance to (Up, Uw).

C(E.Cmf, /{:) — o miri?]}\%)p>k I Z HE.CEt S, P UM||1 < £

where we defined the output distribution by
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INtroauction

to (Classical) Randomness Extractors

Example (left-over hash lemma):

Let {fs | fs: N -> M} be set of two-universal hash functions,
then Ext(s,x) = fs(x) is a (k,&) extractor for |M| = ¢ 2%
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to (Classical) Randomness Extractors

Example (left-over hash lemma):
Let {fs | fs: N -> M} be set of two-universal hash functions,
then Ext(s,x) = fs(x) is a (k,&) extractor for |M| = ¢ 2%

e Extractors are used in many constructions in theoretical CS, but
as the example suggest, they are useful in cryptography, too.

* They map partially secure sources initially correlated to a classical
adversary Adv to an almost uniform and secure distributions
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INtroauction

to Quantum-proof Randomness Extractors

Input condition for classical-quantum-states: png = Z ) (x| @ pF

re N

e conditional min-entropy via maximisation over all guessing strategies
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INtroauction

to Quantum-proof Randomness Extractors

Definition:
A (k,e) quantum-proof Extractor is a deterministic mapping

Ext: D x N -> M such that for all cg-states pnag with conditional min-
entropy lower bounded by k, the output state is almost perfectly secure.
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INtroauction

to Quantum-proof Randomness Extractors

* Central question: what happens if the adversary is quantum?
Does the Extractor still work?

C(Extk)) <=b (Q(Extk)}
classical adversary guantum adversary

 Motivation: quantum cryptography, examination of the power of
quantum memory



INtroauction

to Quantum-proof Randomness Extractors

What did we know so far:

 Quantum-proof constructions: a handful of constructions
are known to be quantum-proof [Renner and collaborators]:
two-universal hashing, Trevisan’s construction

 One-bit output size: always stable [Koenig and Terhall

Not generic: there exists a construction which is known to
be unstable [Gavinsky et al.], but it has rather bad parameters



Results

overview

* \We developed a mathematical framework to study this question,
based on operator space theory

* Using the framework, we can find SDP’s SDP(Ext,k) such that
| C(Ext.k) < Q(Extk) < SDP(Extk) |

* These SDP relaxations characterise many known examples of
guantum-proof extractors, and give new bounds



Results

overview

* \We show that small output Extractors and high input entropy
Extractors are guantum-proof:

SDP(Ext,k+log(2/e)) < O(\/|M]e))
SDP(Ext k+1) < O(2*|N|e)

 for every deterministic mapping F: D x N -> M, there exists a
two-partite game G(F) such that its classical value w(G)
characterises the Condenser property while the quantum value
wq(GG) characterises whether the Condenser is quantum-proof
(Condenser=generalisation of an Extractor, increases the min-
entropy rate)
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» for every deterministic mapping : D x N -> M, there exists a
two-partite game G(F) such that its classical value w(G)
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C(F)
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Results

overview

e for every deterministic mapping Ext: D x N -> M, there exists a
two-partite game G(Ext, k) such that its classical value w(G)
characterises the Extractor property while the quantum value
wq(G) characterises whether the Extractor is quantum-proof

w(G) <= ()y(G)



Mathematical Framework

Overview

e (Classical Extractor property is expressed as norm of a linear
mapping between normed linear spaces

* These normed spaces can be ‘quantized’, giving rise to
operator spaces

* The property of being a quantum-proof Extractor can be
formulated in terms of a completely bounded norm
(norms between operator spaces)



Vathematical Framework

Linear normed spaces

. Consider the norm  ||z]|n = max{||z||1, 27||z||oc }

» P distribution with min-entropy lower bounded by k: || P||n < 1

» Extractor: characterised by the linear mapping A|Ext] : RY - oV
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and the fact

C(Extk) = | A[Ext]|no1 = max{||A[Ezt](2)||1 @ ||z]ln < 1} < ¢



Mathematical Framework

Operator spaces

* Linear normed space £ together with a sequence of norms on

= |/ Q) M,

[ chsical o}

s

satisfying some consistency conditions s

« Amapping L : E -> F between two operator spaces £, F is
completely bounded (cb) with norm c If

Ll = sup {|IL @ ida, |z, rons, } < e
q



Mathematical Framework

guantum-proof Extractors

» Carrying out the construction for the 1-norm on the classical part
leads to an operator space whose dual space characterises the
conditional min-entropy, and the cap norm in addition corresponds
to the normalisation constraint

* An Extractor is quantum-proof if the associated mapping is
completely bounded

QEXtK) = || A[EZ ||eb. ns1 < €
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Vathematical Framework

guantum-proof Extractors

* An Extractor is quantum-proof if the associated mapping is
completely bounded

QEXtK) = ||A[EZ |leb. ns1 < €
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Vathematical Framework

guantum-proof Extractors

e Relaxing this completely bounded norm gives rise to a
hierarchy of SDP relaxations, and the first level characterises
most known quantum-proof constructions

QEXtK) = ||A[EZ |leb. ns1 < €

| A[E2Y|[ev, o1 < SDP(EXtK) |



Outlook & Open guestions

We described a useful framework to study guantum-proof
Randomness Extractors based on operator space theory

Are our upper bounds on the gap between classical and quantum-
proof Extractors tight”?

Higher levels of SDP hierarchies have to be examined; interesting
candidate example: random functions

Through the connection to two-partite games, can any tools from
there applied to Extractors?



Thank you for your attention

Any questions?



